- algebra isomorphism
- мат.изоморфизм алгебр
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Isomorphism theorem — In mathematics, specifically abstract algebra, the isomorphism theorems are three theorems that describe the relationship between quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules,… … Wikipedia
Algebra over a field — This article is about a particular kind of vector space. For other uses of the term algebra , see algebra (disambiguation). In mathematics, an algebra over a field is a vector space equipped with a bilinear vector product. That is to say, it is… … Wikipedia
Algebra homomorphism — A homomorphism between two algebras over a field K , A and B , is a map F:A ightarrow B such that for all k in K and x , y in A ,* F ( kx ) = kF ( x )* F ( x + y ) = F ( x ) + F ( y )* F ( xy ) = F ( x ) F ( y )If F is bijective then F is said to … Wikipedia
Algebra bundle — In mathematics, an algebra bundle is a fiber bundle whose fibers are algebras and local trivializations respect the algebra structure. It follows that the transition functions are algebra isomorphisms. Since algebras are also vector spaces, every … Wikipedia
Isomorphism — In abstract algebra, an isomorphism (Greek: ἴσος isos equal , and μορφή morphe shape ) is a bijective map f such that both f and its inverse f −1 are homomorphisms, i.e., structure preserving mappings.In the more general setting of category… … Wikipedia
Isomorphism of categories — In category theory, two categories C and D are isomorphic if there exist functors F : C rarr; D and G : D rarr; C which are mutually inverse to each other, i.e. FG = 1 D (the identity functor on D ) and GF = 1 C . This means that both the objects … Wikipedia
Isomorphism extension theorem — In field theory, a branch of mathematics, the isomorphism extension theorem is an important theorem regarding the extension of a field isomorphism to a larger field. Isomorphism extension theorem The theorem states that given any field F, an… … Wikipedia
Clifford algebra — In mathematics, Clifford algebras are a type of associative algebra. They can be thought of as one of the possible generalizations of the complex numbers and quaternions.[1][2] The theory of Clifford algebras is intimately connected with the… … Wikipedia
Octonion algebra — In mathematics, an octonion algebra over a field F is an algebraic structure which is an 8 dimensional composition algebra over F. In other words, it is a unital nonassociative algebra A over F with a nondegenerate quadratic form N (called the… … Wikipedia
Quaternion algebra — In mathematics, a quaternion algebra over a field, F , is a particular kind of central simple algebra, A , over F , namely such an algebra that has dimension 4, and therefore becomes the 2 times;2 matrix algebra over some field extension of F ,… … Wikipedia
List of abstract algebra topics — Abstract algebra is the subject area of mathematics that studies algebraic structures, such as groups, rings, fields, modules, vector spaces, and algebras. The phrase abstract algebra was coined at the turn of the 20th century to distinguish this … Wikipedia